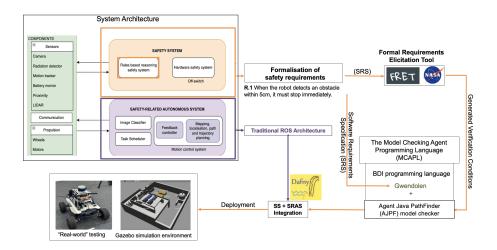
Towards Verifiable Safety for **Autonomous Robots**

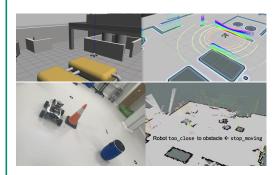

Safe-ROS: An Architecture for Autonomous **Robots in Safety-Critical Domains**

Diana C. Benjumea¹, Louise A. Dennis¹, Marie Farrell¹

The use of autonomous robots in safety-critical domains can improve human safety, task efficiency and cost. However, without formal evidence that these systems are free from unexpected and hazardous behaviour, deployment in such domains is still restricted in practice.

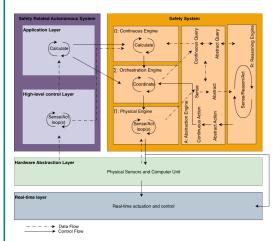
1 Our contribution Case Study

The **Safe-ROS** architecture for **Platform:** AgileX Scout Mini. developing reliable and verifiable Scenario: Nuclear Inspection. autonomous robots.



2.1 From Safety Requirement to Verifiable Property:

R1: When the robot detects that an obstacle is within 5cm of it, then it must stop immediately. whenever too_close agilex_agent shall satisfy stopped LTL expression: G (too_close \rightarrow F stopped)


[] ($B(agilex_agent, too_close) \rightarrow <> B(agilex_agent, stopped)$)

Validation: Testing

Future work

Extending Safe-ROS to incorporate richer safety properties (e.g., returning to a door)

This work was funded in part by The University of Manchester, the EPSRC-funded CRADLE project (EPSRC grant $\mbox{EP}/\mbox{X02489X}/\mbox{1})\mbox{, and}$ the Royal Academy of Engineering, and benefited from a Fellowship at RAICo (The Robotics and AI Collaboration).

1. University of Manchester

diana.benjumeahernandez@manchester.ac.uk

