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The use of autonomous robots in safety-critical domains can improve
human safety, task efficiency and cost. However, without formal evidence
that these systems are free from unexpected and hazardous behaviour,
deployment in such domains is still restricted in practice.

1 Our contribution 2 Case Study

The Safe-ROS architecture for Platform: AgileX Scout Mini.
developing reliable and verifiable Scenario: Nuclear Inspection.
autonomous robots.
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2.1 From Safety Requirement to Verifiable Property:

R1: When the robot detects that an obstacle is within 5cm of it, then it must stop immediately.
whenever too_close agilex_agent shall satisfy stopped
LTL expression: G (too_close — F stopped)

[ ( B(agilex_agent, too_close) —»<> B(agilex_agent, stopped))
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Validation: Testing
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Future work

Extending Safe-ROS to incorporate richer
safety properties (e.g., returning to a door)
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High-level control Layer

=)

op(s)

A: Absiraction Engine'
CnmmunTus Action
Abstract Actior
I

i
Hardware Abstraction Layer
Physical Sensors and Gomputer Unit

|
v

Real-time layer
Real-time actuation and control -

— === DataFlow
————> Control Flow

This work was funded in part by The University
of Manchester, the EPSRC-funded CRADLE
project (EPSRC grant EP/X02489X/1), and
the Royal Academy of Engineering, and
benefited from a Fellowship at RAICo (The
Robotics and Al Collaboration).

1. University of Manchester

diana.benjumeahernandez@manchester.ac.uk




