Towards Verifiable Safety for

Autonomous Robots

Safe-ROS: An Architecture for Autonomous
Robots in Safety-Critical Domains

Diana C. Benjumea®, Louise A. Dennis!, Marie Farrell*

The use of autonomous robots in safety-critical domains can improve
human safety, task efficiency and cost. However, without formal evidence
that these systems are free from unexpected and hazardous behaviour,
deployment in such domains is still restricted in practice.

1 Our contribution 2 Case Study

The Safe-ROS architecture for Platform: AgileX Scout Mini.
developing reliable and verifiable Scenario: Nuclear Inspection.
autonomous robots.

System Architecture

COMPONENTS

= sensors
'SAFETY SYSTEM

Camera Formal Requirements

Radiation detector | || Rules based reasoning arswar sfty systom — Elicitation Tool
) | I— N safety system " Formalisation of (SRS) asi
Moton racker S T safety requirements —— K34 3
R R.1 When the robot detects an obstacle
Proximiy within 5cm, it must stop immediately.
LIDAR s)
'SAFETY-RELATED AUTONOMOUS SYSTEM

f+>| Traditional ROS Architecture

The Model Checking Agent
Programming Language
(MCAPL)

Image Classifer o,
B b Feedback | | localisaton path
T)
Wheels Task Schoduler
A8 2

(sys) uoneayoeds
sjuswalinbay aiemyos

BDI programming language

(i Gwendolen
g +
Deployment SS + SRAS

Agent Java PathFinder
Integration (AJPF) model checker

SUOHIPUOD UOREIYUBA PaJeIBUSD)

“Real-world" testing Gazebo simulation environment

2.1 From Safety Requirement to Verifiable Property:

R1: When the robot detects that an obstacle is within 5cm of it, then it must stop immediately.
whenever too_close agilex_agent shall satisfy stopped
LTL expression: G (too_close — F stopped)

[(B(agilex_agent, too_close) —»<> B(agilex_agent, stopped))

MANCHESTER
1824

The University of Manchester

Download the paper —

Validation: Testing

= e
% s

v @
Robot too_close to obstacle ¢ stop_moving

W

-

Future work

Extending Safe-ROS to incorporate richer
safety properties (e.g., returning to a door)

'Application Layer

@m‘@
A
l
i

0: Continuous Engine z =
[} <]
Calculate] g€ > 5>
> H g
g 3
| g
! S 4
5 Orchestration Engine .~ i
%
4 v
™ @’di9] k:
8 g
A5=> 51>
| <

!
T1: Physical Engine)G

SonselAdt) 4
loop(s) SenselAc
log
A
|

R: Reasoning Engine|

High-level control Layer

=)

op(s)

A: Absiraction Engine'
CnmmunTus Action
Abstract Actior
I

i
Hardware Abstraction Layer
Physical Sensors and Gomputer Unit

|
v

Real-time layer
Real-time actuation and control -

— === DataFlow
————> Control Flow

This work was funded in part by The University
of Manchester, the EPSRC-funded CRADLE
project (EPSRC grant EP/X02489X/1), and
the Royal Academy of Engineering, and
benefited from a Fellowship at RAICo (The
Robotics and Al Collaboration).

1. University of Manchester

diana.benjumeahernandez@manchester.ac.uk

